TeleFlow Custom Language Module Specification

Disclaimer

All language module code used with TeleFlow is compiled using Borland C++ Builder 6. Any language module implementation must adhere to Borland's standard for class exportation from dynamically linked libraries (DLLs). For information about creating DLLs with Borland C++ Builder 6, please see the Borland C++ Builder 6 documentation.

Conceptual Overview

A language module transforms a string of characters into a comma delimited string of file names without file extensions. This new string represents the audio files that should be played in order to “say” the original string. A string may be “said” in several different ways:

1. A number

2. A sequence of digits (non-numeric characters are interpreted as ½ second pauses)

3. A sequence of characters, such as for spelling (symbols are represented by their names)

4. A quantity of money

5. A full date, the month and day, or the year and month

6. The time, in 12 hour format or 24 hour format

Since different languages have different nuances, different sequences of audio files are needed to properly “say” each type of string. This document, and the accompanying example code, provide the information required to create a custom language module.

Required/Example Files

In order to compile a new language module DLL, the following files are required in addition to the files that implement the custom language rules:

1. LanguageModule.h

2. LanguageModule.cpp

3. <string>

The source code to build the English language module packaged with TeleFlow, Lang_English.dll, including required files 1 and 2, is available for download on the enGenic website: www.enGenic.com. The sound file names in the example source code differ from the actual implementation source code to provide proper example of file naming. The actual implementation code is maintained for legacy reasons. The project files provided are for building with Borland C++ Builder 6.

WordList

The WordList class is designed to facilitate generating comma delimited lists of file names (without file extensions).

wordTable

The wordTable member of the LanguageModule class maps integers to file name strings (without file extensions).

Required Methods

LanguageModule is a virtual class. In order to create an instantiable class, the following methods must be implemented:

1. WordList DateWordList(string date, LanguageModule::SAY_FORMAT format)

· returns a WordList that represents date as specified by format

· format may be SAY_DATE, SAY_YEARMONTH, or SAY_MONTHDAY

2. WordList MoneyWordList(string money)

· returns a WordList that represents money

3. WordList NumberGroupWordList(string numbergroup, bool ordinal)

· returns a WordList that represents the numbers in a numbergroup

· languages such as English use number groups of 3 to modify other quantities e.g. The number group “one hundred and fifty two” modifies “thousand” in the number “8,152,347”

· the boolean parameter ordinal, when true, specifies that the number should be spoken as an ordinal rather than a cardinal e.g. “first” rather than “one” for “1”

· adds “positive” if the first character is '+' and negative if the first character is '-'

4. WordList NumberGroupWordList(int index, bool plural)

· returns a WordList that represents the name of a number group indicated by index

· in English, NumberGroupWordList(2, false) would return “million”, NumberGroupWordList(1, false) would return “thousand”, and NumberGroupWordList(0, false) would return “”

· the boolean parameter plural, when true, pluralises the number group name

5. WordList TimeWordList(string time, LanguageModule::SAY_FORMAT format)

· returns a WordList that represents time as specified by format

· format may be SAY_12HOUR or SAY_24HOUR

6. void InitialiseWordTable(void)

- method to be called in the constructor to intialise wordTable

Optional Methods

If desired, the following methods may be overwritten:

1. WordList AlphaNumericWordList(string text)

· returns a WordList that represents the characters in text

· the default implementation of AlphaNumericWordList expects wordTable to implement the following conventions:

a) cardinal values are mapped by WordTable[WB_CARDINAL + value] -> file name

i.e. WordTable[WB_CARDINAL + 1] -> “one”

b) ordinal values are mapped by WordTable[WB_ORDINAL + value] -> file name

i.e. WordTable[WB_ORDINAL + 1] -> “first”

c) ASCII values are mapped by WordTable[WB_ASCII + value] -> file name

i.e. WordTable[WB_ASCII + '&'] -> “ampresand”

d) month names are mapped by WordTable[WB_MONTH + month number] -> file name

i.e. WordTable[WB_MONTH + 1] -> “January”

2. WordList DigitsWordList(string digits)

· returns a WordList that represents digits

· replaces any non-numeric characters with “pause”

3. WordList IntegerWordList(string number, bool ordinal = false)

· returns a WordList that represents the integer number

· returns file name for “0” if number is non-numeric

· the boolean parameter ordinal, when true, specifies that the number should be spoken as an ordinal rather than a cardinal e.g. “first” rather than “one” for “1”

· uses the virtual methods NumberGroupWordList(string numbergroup, bool ordinal) and NumberGroupWordList(int index, bool plural) for each group from left to right

